Classical Wakimoto Realizations of Chiral WZNW Bloch Waves

نویسنده

  • J. Balog
چکیده

It is well-known that the chiral WZNW Bloch waves satisfy a quadratic classical exchange algebra which implies the affine Kac-Moody algebra for the corresponding currents. We here obtain a direct derivation of the exchange algebra by inverting the symplectic form on the space of Bloch waves, and give a completely algorithmic construction of its generalized free field realizations that extend the classical Wakimoto realizations of the current algebra. PACS codes: 11.25.Hf, 11.10.Kk, 11.30.Na keywords: WZNW model, exchange algebra, Wakimoto realizations ∗ Corresponding author’s e-mail: [email protected], phone/fax: (+36) 62 544 368.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

/ 98 08 09 6 v 2 1 9 O ct 1 99 9 Wakimoto realizations of current and exchange algebras ∗

Working at the level of Poisson brackets, we describe the extension of the generalized Wakimoto realization of a simple Lie algebra valued current, J, to a corresponding realization of a group valued chiral primary field, b, that has diagonal monodromy and satisfies Kb ′ = Jb. The chiral WZNW field b is subject to a monodromy dependent exchange algebra, whose derivation is reviewed, too.

متن کامل

ar X iv : h ep - t h / 98 08 09 6 v 1 1 7 A ug 1 99 8 Wakimoto realizations of current and exchange algebras ∗

Working at the level of Poisson brackets, we describe the extension of the generalized Wakimoto realization of a simple Lie algebra valued current, J, to a corresponding realization of a group valued chiral primary field, b, that has diagonal monodromy and satisfies Kb ′ = Jb. The chiral WZNW field b is subject to a monodromy dependent exchange algebra, whose derivation is reviewed, too.

متن کامل

ON THE CHIRAL WZNW PHASE SPACE, EXCHANGE r-MATRICES AND POISSON-LIE GROUPOIDS

This is a review of recent work on the chiral extensions of the WZNW phase space describing both the extensions based on fields with generic monodromy as well as those using Bloch waves with diagonal monodromy. The symplectic form on the extended phase space is inverted in both cases and the chiral WZNW fields are found to satisfy quadratic Poisson bracket relations characterized by monodromy d...

متن کامل

Wakimoto realizations of current algebras: an explicit construction

A generalized Wakimoto realization of ĜK can be associated with each parabolic subalgebra P = (G0 + G+) of a simple Lie algebra G according to an earlier proposal by Feigin and Frenkel. In this paper the proposal is made explicit by developing the construction of Wakimoto realizations from a simple but unconventional viewpoint. An explicit formula is derived for the Wakimoto current first at th...

متن کامل

An explicit construction of Wakimoto realizations of current algebras

It is known from a work of Feigin and Frenkel that a Wakimoto type, generalized free field realization of the current algebra Ĝk can be associated with each parabolic subalgebra P = (G0+G+) of the Lie algebra G, where in the standard case G0 is the Cartan and P is the Borel subalgebra. In this letter we obtain an explicit formula for the Wakimoto realization in the general case. Using Hamiltoni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999